您现在的位置: 万盛学电脑网 >> 程序编程 >> 网络编程 >> 编程语言综合 >> 正文

Ruby实现的最优二叉查找树算法

作者:佚名    责任编辑:admin    更新时间:2022-06-22

   这篇文章主要介绍了Ruby实现的最优二叉查找树算法,本文直接给出实现代码,需要的朋友可以参考下

  算法导论上的伪码改写而成,加上导论的课后练习第一题的解的构造函数。

  代码如下:

  #encoding: utf-8

  =begin

  author: xu jin

  date: Nov 11, 2012

  Optimal Binary Search Tree

  to find by using EditDistance algorithm

  refer to <>

  example output:

  "k2 is the root of the tree."

  "k1 is the left child of k2."

  "d0 is the left child of k1."

  "d1 is the right child of k1."

  "k5 is the right child of k2."

  "k4 is the left child of k5."

  "k3 is the left child of k4."

  "d2 is the left child of k3."

  "d3 is the right child of k3."

  "d4 is the right child of k4."

  "d5 is the right child of k5."

  The expected cost is 2.75.

  =end

  INFINTIY = 1 / 0.0

  a = ['', 'k1', 'k2', 'k3', 'k4', 'k5']

  p = [0, 0.15, 0.10, 0.05, 0.10, 0.20]

  q = [0.05, 0.10, 0.05, 0.05, 0.05 ,0.10]

  e = Array.new(a.size + 1){Array.new(a.size + 1)}

  root = Array.new(a.size + 1){Array.new(a.size + 1)}

  def optimalBST(p, q, n, e, root)

  w = Array.new(p.size + 1){Array.new(p.size + 1)}

  for i in (1..n + 1)

  e[i][i - 1] = q[i - 1]

  w[i][i - 1] = q[i - 1]

  end

  for l in (1..n)

  for i in (1..n - l + 1)

  j = i + l -1

  e[i][j] = 1 / 0.0

  w[i][j] = w[i][j - 1] + p[j] + q[j]

  for r in (i..j)

  t = e[i][r - 1] + e[r + 1][j] + w[i][j]

  if t < e[i][j]

  e[i][j] = t

  root[i][j] = r

  end

  end

  end

  end

  end

  def printBST(root, i ,j, signal)

  return if i > j

  if signal == 0

  p "k#{root[i][j]} is the root of the tree."

  signal = 1

  end

  r = root[i][j]

  #left child

  if r - 1< i

  p "d#{r - 1} is the left child of k#{r}."

  else

  p "k#{root[i][r - 1]} is the left child of k#{r}."

  printBST(root, i, r - 1, 1 )

  end

  #right child

  if r >= j

  p "d#{r} is the right child of k#{r}."

  else

  p "k#{root[r + 1][j]} is the right child of k#{r}."

  printBST(root, r + 1, j, 1)

  end

  end

  optimalBST(p, q, p.size - 1, e, root)

  printBST(root, 1, a.size-1, 0)

  puts "nThe expected cost is #{e[1][a.size-1]}."